$$\Delta y = y_f - y_i = -22 \text{ m}$$
The change in potential energy of the roller coaster car is:
$$\Delta U_g = mgy_f - mgy_i = -(236 \text{ kg})(9.8 \text{ m/s}^2)(-22 \text{ m}) = 48992 \text{ J}$$
The change in kinetic energy of the roller coaster car is:
$$\Delta K = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 = \frac{1}{2}(236 \text{ kg})v_f^2 - 0$$
By the conservation of energy, we have:
$$\Delta U_g = \Delta K$$
$$-(236 \text{ kg})(9.8 \text{ m/s}^2)(-22 \text{ m}) = \frac{1}{2}(236 \text{ kg})v_f^2$$
Solving for $v_f$, we get:
$$v_f = \sqrt{\frac{2(48992 \text{ J})}{236 \text{ kg}}} = 28.2 \text{ m/s}$$
Therefore, the velocity of the roller coaster car when it gets to 18 meters is 28.2 m/s.